Capping Protein Increases the Rate of Actin-Based Motility by Promoting Filament Nucleation by the Arp2/3 Complex
نویسندگان
چکیده
Capping protein (CP) is an integral component of Arp2/3-nucleated actin networks that drive amoeboid motility. Increasing the concentration of capping protein, which caps barbed ends of actin filaments and prevents elongation, increases the rate of actin-based motility in vivo and in vitro. We studied the synergy between CP and Arp2/3 using an in vitro actin-based motility system reconstituted from purified proteins. We find that capping protein increases the rate of motility by promoting more frequent filament nucleation by the Arp2/3 complex and not by increasing the rate of filament elongation as previously suggested. One consequence of this coupling between capping and nucleation is that, while the rate of motility depends strongly on the concentration of CP and Arp2/3, the net rate of actin assembly is insensitive to changes in either factor. By reorganizing their architecture, dendritic actin networks harness the same assembly kinetics to drive different rates of motility.
منابع مشابه
Follow the Monomer
Capping proteins limit actin filament growth, but paradoxically increase actin-based cell motility. This has been attributed to funneling of actin monomers to the filament ends that remain uncapped. Using a reconstituted motility system, Akin and Mullins (2008) now demonstrate that filament capping increases Arp2/3-based nucleation and branching, rather than elevating the rate of filament elong...
متن کاملHow VASP enhances actin-based motility
The function of vasodilator-stimulated phosphoprotein (VASP) in motility is analyzed using a biomimetic motility assay in which ActA-coated microspheres propel themselves in a medium containing actin, the Arp2/3 complex, and three regulatory proteins in the absence or presence of VASP. Propulsion is linked to cycles of filament barbed end attachment-branching-detachment-growth in which the ActA...
متن کاملArp2/3 complex is essential for actin network treadmilling as well as for targeting of capping protein and cofilin
Lamellipodia are sheet-like protrusions formed during migration or phagocytosis and comprise a network of actin filaments. Filament formation in this network is initiated by nucleation/branching through the actin-related protein 2/3 (Arp2/3) complex downstream of its activator, suppressor of cAMP receptor/WASP-family verprolin homologous (Scar/WAVE), but the relative relevance of Arp2/3-mediate...
متن کاملPathway of actin filament branch formation by Arp2/3 complex.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA...
متن کاملPivotal role of VASP in Arp2/3 complex–mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility
The Listeria monocytogenes ActA protein mediates actin-based motility by recruiting and stimulating the Arp2/3 complex. In vitro, the actin monomer-binding region of ActA is critical for stimulating Arp2/3-dependent actin nucleation; however, this region is dispensable for actin-based motility in cells. Here, we provide genetic and biochemical evidence that vasodilator-stimulated phosphoprotein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 133 شماره
صفحات -
تاریخ انتشار 2008